Please use this identifier to cite or link to this item:
Title: Chromophore-Protein Coupling beyond Nonpolarizable Models: Understanding Absorption in Green Fluorescent Protein
Authors: Daday, Csaba
Curutchet, Carles
Sinicropi, Adalgisa 
Mennucci, Benedetta
Filippi, Claudia
Keywords: Physical and Theoretical Chemistry; Computer Science Applications1707 Computer Vision and Pattern Recognition
Issue Date: 2015
Project: None 
The nature of the coupling of the photoexcited chromophore with the environment in a prototypical system like green fluorescent protein (GFP) is to date not understood, and its description still defies state-of-the-art multiscale approaches. To identify which theoretical framework of the chromophore− protein complex can realistically capture its essence, we employ here a variety of electronic-structure methods, namely, timedependent density functional theory (TD-DFT), multireference perturbation theory (NEVPT2 and CASPT2), and quantum Monte Carlo (QMC) in combination with static point charges (QM/MM), DFT embedding (QM/DFT), and classical polarizable embedding through induced dipoles (QM/MMpol). Since structural modifications can significantly affect the photophysics of GFP, we also account for thermal fluctuations through extensive molecular dynamics simulations. We find that a treatment of the protein through static point charges leads to significantly blue-shifted excitation energies and that including thermal fluctuations does not cure the coarseness of the MM description. While TDDFT calculations on large cluster models indicate the need of a responsive protein, this response is not simply electrostatic: An improved description of the protein in the ground state or in response to the excitation of the chromophore via ground-state or state-specific DFT and MMpol embedding does not significantly modify the results obtained with static point charges. Through the use of QM/MMpol in a linear response formulation, a different picture in fact emerges in which the main environment response to the chromophore excitation is the one coupling the transition density and the corresponding induced dipoles. Such interaction leads to significant red-shifts and a satisfactory agreement with full QM cluster calculations at the same level of theory. Our findings demonstrate that, ultimately, faithfully capturing the effects of the environment in GFP requires a quantum treatment of large photoexcited regions but that a QM/classical model can be a useful approximation when extended beyond the electrostatic-only formulation.
ISSN: 1549-9618
DOI: 10.1021/acs.jctc.5b00650
Appears in Collections:Publications

Show full item record

Page view(s)

Last Week
Last month
checked on May 14, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.