Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12779/6257
Title: Effects of the Protein Environment on the Spectral Properties of Tryptophan Radicals in Pseudomonas aeruginosa Azurin
Authors: Bernini, Caterina
Andruniów, T.
Olivucci, Massimo 
Pogni, Rebecca 
Basosi, Riccardo 
Sinicropi, Adalgisa 
Issue Date: 2013
Project: None 
Journal: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Abstract: 
Many biological electron-transfer reactions involveshort-lived tryptophan radicals as key reactive intermediates. While these species are difficult to investigate, the recent photogeneration of a long-lived neutral tryptophan radical in two Pseudomonas aeruginosa azurin mutants (Az48W and ReAz108W) made it possible to characterize the electronic, vibrational, and magnetic properties of such species and their sensitivity to the molecular environment.Indeed, in Az48W the radical is embedded in the hydrophobic core while, in ReAz108W it is solvent-exposed. Here we use density functional theory and multiconfigurational perturbation theory to construct quantum-mechanics/molecular-mechanics models ofAz48W• and ReAz108W• capable of reproducing specific features of their observed UV−vis, resonance Raman, and electron paramagnetic resonance spectra. The results show that the models can correctly replicate the spectral changes imposed by the two contrasting hydrophobic and hydrophilic environments. Most importantly, the same models can be employed to disentangle the molecular-level interactions responsible for such changes. It is found that the control of the hydrogen bonding between the tryptophan radical and a single specific surface water molecule in ReAz108W• represents an effective means of spectral modulation. Similarly, a specific electrostatic interaction between the radical moiety and a Val residue is found to control theAz48W• excitation energy. These modulations appear to be mediated by the increase in nitrogen negative charge (andconsequent increase in hydrogen bonding) of the spectroscopic D2 state with respect to the D0 state of the chromophore. Finally, the same protein models are used to predict the relaxed Az48W• and ReAz108W• D2 structures, showing that the effect of the environment on the corresponding fluorescence maxima must parallel that of D0 absorption spectra.
Description: 
58002
URI: http://hdl.handle.net/20.500.12779/6257
ISSN: 0002-7863
DOI: 10.1021/ja400464n
Appears in Collections:Publications

Show full item record

Page view(s)

2
Last Week
0
Last month
2
checked on May 9, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.