Please use this identifier to cite or link to this item:
Title: The nature of tryptophan radicals involved in the long-range electron transfer of lignin peroxidase and lignin peroxidase-like systems: insights from quantum mechanical/molecular mechanics simulations
Authors: Bernini, Caterina
Pogni, Rebecca 
Basosi, Riccardo 
Sinicropi, Adalgisa 
Keywords: hyperfine coupling constants; g-tensors; EPR; DFT; enzyme
Issue Date: 2012
Project: None 
A catalytically active tryptophan radical has been demonstrated to be involved in the long-range electron transfer to the heme cofactor of lignin peroxidase (LiP) from Phanerochaete chrysosporium although no direct detection by EPR spectroscopy of the tryptophan radical intermediate has been reported to date. An engineering-based approach has been used to manipulate the microenvironment of the redox-active tryptophan site in LiP and Coprinus cinereus Peroxidase (CiP), allowing the direct evidence of the tryptophan radical species. In light of the newly available EPR experimental data, we performed a quantum mechanical/molecular mechanics computational study to characterize the tryptophan radicals in the above protein matrices as well as in pristine LiP. The nature of the tryptophan radicals is discussed together with the analysis of their environment with the aim of understanding the different behavior of pristine LiP in comparison with that of LiP and CiP variants.
ISSN: 0887-3585
DOI: 10.1002/prot.24046
Appears in Collections:Publications

Show full item record

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.