Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12779/5829
Title: Metadynamics Simulations of Enantioselective Acylation Give Insights into the Catalytic Mechanism of Burkholderia cepacia Lipase
Authors: Bellucci, Luca
Laino, T
Tafi, Andrea 
Botta, Maurizio 
Issue Date: 2010
Project: None 
Journal: JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Abstract: 
The catalytic mechanism of Burkholderia cepacia lipase (BCL), which catalyzes the enantioselective hydrolysis of racemic esters of primary alcohols, was investigated by modeling the first stage of the enzymatic hydrolysis of (S/R)-2-methyl-3-phenyl-propanol (MPP) acetate, using molecular dynamics simulations in a mixed quantum mechanical/molecular mechanical (QM/MM) framework. The free energy surface of the enzyme acylation reaction was computed for both enantiomers. The simulations predict the existence of different reaction free energies that favor the (S)-enantiomer over the (R)-enantiomer by 5 kcal/mol. Analysis of the structural and dynamical aspects of the simulated reactions reveals an unforeseen reorganization of the catalytic triad in the (R)-MPP ester, driven by steric hindrance and involving the residues Asp264 and Glu289. Exploiting the different catalytic role of the above-mentioned acidic residues, we suggest a way to regulate the enantioselectivity of BCL by means of a few judicious point mutations that prevent the formation of the second catalytic triad used in the reaction with the (R)-enantiomer.
Description: 
36463
URI: http://hdl.handle.net/20.500.12779/5829
ISSN: 1549-9618
DOI: 10.1021/ct900636w
Appears in Collections:Publications

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.