Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12779/5186
Title: Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering
Authors: B., Valderrama
H., GARCIA ARELLANO
S., Giansanti
Baratto, Maria Camilla 
Pogni, Rebecca 
R., VAZQUEZ DUHALT
Keywords: hemeproteins; peroxidase; oxidative inactivation; protein engineering
Issue Date: 2006
Project: None 
Journal: THE FASEB JOURNAL
Abstract: 
Iso-1-cytochrome c, as any other hemeprotein, is able to react with hydrogen peroxide and to engage in the peroxidase cycle. However, peroxidases are irreversibly inactivated by their substrate, hydrogen peroxide. The oxidative inactivation of hemeproteins is mechanism based and arises as the consequence of unproductive electron abstraction reactions. Protein elements, such as the porphyrin ring or the protein backbone, act as simultaneous and competing electron sources even in the presence of exogenous reducing substrates, leading to a decline in activity. It is hypothetically possible to alter the intramolecular electron transfer pathways by direct replacement of low redox potential residues around the active site; as a consequence, the inactivation process would be delayed or even suppressed. To demonstrate this hypothesis, a redox-inspired strategy was implemented until an iso-1-cytochrome c variant fully stable at catalytic concentrations of hydrogen peroxide was obtained. This variant, harboring the N52I,W59F,Y67F,K79A,F82G substitutions, preserved the catalytic performance of the parental protein but achieved a 15-fold higher total-turnover number. The phenotype of this variant was reflected in the stability of its electronic components, allowing identification of a protein-based radical intermediate mechanistically similar to Compound I of classical peroxidases. The results presented here clearly demonstrate that redox-inspired protein engineering is a useful tool for the rational modulation of intramolecular electron transfer networks.
Description: 
36629
URI: http://hdl.handle.net/20.500.12779/5186
ISSN: 0892-6638
DOI: 10.1096/fj.05-4173fje
Appears in Collections:Publications

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.